## BALANCING VALVE SOLUTIONS

# **RWV Hydronic Controls**



## 951x series

#### **Features**

Fixed orifice for constant Cv and max. performance Fast & easy calibration Venturi insert for optimal accuracy ±3% PTFE seat guarantees positive shut-off function Integral Memory Stop Can be used as shut off without resetting position Wide range of flow available Intended for HVAC & domestic water use Fixed orifice valve

DZR brass construction - corrosion resistant 300WOG max. pressure 300psi at ambient conditions to 160°F 150psi max. pressure rating at 260°F

FNPT, MNPT, Solder, EzPress and PEX connections available Available in Lead Free configurations

#### Models

9517 --- FNPT ends 9519 --- Solder ends 9517AB --- FNPT ends LEAD FREE 9519AB --- Solder ends LEAD FREE **9517T-xx** --- Union ends with tailpieces

Certified LEAD FREE NSF/ANSI 61 & 372

provides

greater efficiency

than

a variable orifice

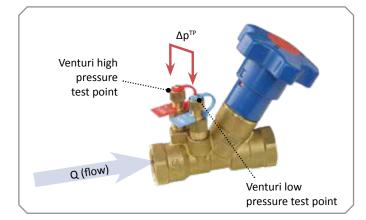
DZR

Dezincification

Resistant

9517T-PP

9517


9517IBV-xy ----Union ends with tailpiece and Isolation Ball Valve

x can be ---- **M**: Male Tailpiece F: Female Tailpiece **S**: Solder Tailpiece P: EzPress Tailpiece E: PEX F1960 Tailpiece S: Solder IBV P: EzPress IBV

y can be ---- F: Female IBV

#### **Flow Range**

0.12 GPM - 55.63 GPM



| Size                | <b>X-1</b> /2" | U-½" | L-1⁄2" | 1⁄2" | <sup>3</sup> ⁄4" | 1" | <b>1-</b> <sup>1</sup> / <sub>4</sub> " | <b>1-</b> ½" | 2" |
|---------------------|----------------|------|--------|------|------------------|----|-----------------------------------------|--------------|----|
| Flow range<br>(GPM) |                |      |        |      |                  |    | 8.56 -<br>19.81                         |              |    |

\* 1/2" - 2" for 9517 and 9519

U-1/2" - 1" for 9517T





E: PEX F1960 IBV



## **Features**

Variable orifice terminal balancing valve Globe design Can be used as shut off without resetting position Intended for HVAC & domestic water use

### 300WOG max. pressure

300psi at ambient conditions to 160°F 150psi maximum pressure rating at 260°F Threaded & Solder connections Lead Free standard Valve upstream and downstream test ports standard

#### Models

9527AB --- Threaded connections LEAD FREE 9529AB --- Solder connections LEAD FREE

### **Flow Range**

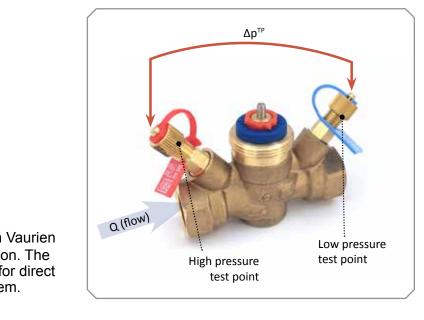
0.49 GPM - 55.63 GPM

| Size                | L-1⁄2"    | 1/2"      | <sup>3</sup> /4" | 1"        | <b>1</b> -¼" | <b>1-</b> ½" | 2"          |
|---------------------|-----------|-----------|------------------|-----------|--------------|--------------|-------------|
| Flow range<br>(GPM) | 0.49-1.17 | 0.98-2.35 | 2.19-5.15        | 4.09-9.56 | 8.56-19.81   | 12.84-29.80  | 24.09-55.63 |

\* 1/2" - 3/4" for 9529AB



The 9520 series can be utilized together with Vaurien series of linear actuators for ON/OFF operation. The actuator can be easily mounted to the valve for direct interface with the building management system.


**RWV Hydronic Controls®** 

## Static Balancing Valves











## 9907 series

#### **Features**

Automatically maintains desired flow rate Efficient "in-line" body design Interchangeable flow cartridges Dezincification Stainless steel spring and piston Flow regulation accuracy ±5% Multiple connections Available with integral isolation ball valve for positive shut-off Valve upstream and downstream test ports standard

DZR brass construction - corrosion resistant 300WOG max. pressure 300psi at ambient conditions to 160°F 150psi maximum pressure rating at 260°F FNPT, MNPT, Solder, EzPress and PEX connections available Cartridge is DZR brass with stainless steel spring and piston

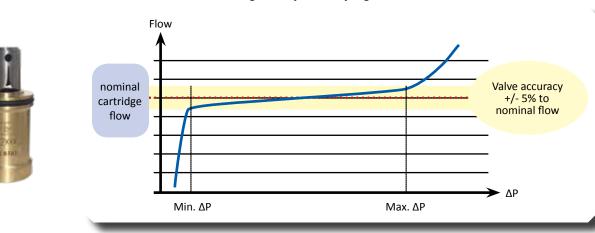
#### Models

9907T-xx --- Union ends with tailpieces 9907IBV-xy --- Union ends with tailpiece and isolation ball valve

| x can be |                                                 | <b>F</b> : Female Tailpiece<br><b>E</b> : PEX F1960 Tailpiece |
|----------|-------------------------------------------------|---------------------------------------------------------------|
| y can be | <b>F</b> : Female IBV<br><b>P</b> : EzPress IBV | <b>S</b> : Solder IBV<br><b>E</b> : PEX F1960 IBV             |

**Flow Range** 

| 1⁄2" - 3⁄4"-L  | 0.32 GPM - 3.17 GPM |
|----------------|---------------------|
| ³⁄₄" - 1-¹⁄₄"L | 2.06 GPM - 15.1 GPM |
| 1-1⁄4" - 2"    | 7.29 GPM - 41.2 GPM |
| 2"-H           | 25.4 GPM - 154 GPM  |




9907T-FF

S: Solder Tailpiece

#### Cartridges

Cartridges available in different ranges of working differential pressure, the minimum and maximum working  $\Delta P$  therefore depend on the specific cartridge model. A numeric code is marked on the cartridge body identifying it.



DZR

Resistant

| 1/2" 3/4       | <b>″-L</b>    |                  | 3⁄4″ 1       |
|----------------|---------------|------------------|--------------|
| Mini           |               |                  | Small (Stand |
| RWV Code       | Flow<br>(GPM) | Range∆P<br>(psi) | RWV Co       |
| KRR991202.1880 | 0.32          | 2.2-25           | KRR992213    |
| KRR991203.1880 | 0.48          | 2.3-32           | KRR992215    |
| KRR991204.1880 | 0.63          | 2.3-32           | KRR992217    |
| KRR991205.1880 | 0.79          | 2.3-32           | KRR992219    |
| KRR991206.1880 | 0.95          | 2.3-32           | KRR992221    |
| KRR991207.1880 | 1.11          | 2.3-32           | KRR992224    |
| KRR991208.1880 | 1.27          | 2.3-32           | KRR992227    |
| KRR991209.1880 | 1.43          | 2.3-32           | KRR992230    |
| KRR991210.1880 | 1.59          | 2.3-32           | KRR992233    |
| KRR991211.1880 | 1.74          | 2.5-32           | KRR992236    |
| KRR991212.1880 | 1.90          | 2.5-32           | KRR992240    |
|                |               |                  |              |

| KRR991207.1880 | ) 1.11 | 2.3-32 | KRR992224 |
|----------------|--------|--------|-----------|
| KRR991208.188  | ) 1.27 | 2.3-32 | KRR992227 |
| KRR991209.188  | 0 1.43 | 2.3-32 | KRR992230 |
| KRR991210.188  | 0 1.59 | 2.3-32 | KRR992233 |
| KRR991211.1880 | ) 1.74 | 2.5-32 | KRR992236 |
| KRR991212.188  | 0 1.90 | 2.5-32 | KRR992240 |
| KRR991213.188  | 2.06   | 2.5-32 | KRR99224  |
| KRR991214.188  | ) 2.22 | 2.5-32 | KRR992250 |
| KRR991215.188  | 2.38   | 2.5-32 | KRR99225  |
| KRR991216.188  | 2.54   | 2.5-32 | KRR992260 |
| KRR991218.188  | 2.85   | 2.6-32 | KRR992266 |

## 1¼" 1½" 2"

KRR991220.1880 3.17 2.8-32

Medium (Standard Pressure Range)

| RWV Code       | Flow<br>(GPM) | Range∆P<br>(psi) | RWV Co    |
|----------------|---------------|------------------|-----------|
| KRR994246.1880 | 7.29          | 2.0-33           | KRR994362 |
| KRR994250.1880 | 7.93          | 2.0-33           | KRR994368 |
| KRR994255.1880 | 8.72          | 2.0-33           | KRR994374 |
| KRR994258.1880 | 9.19          | 2.0-33           | KRR994379 |
| KRR994262.1880 | 9.83          | 2.0-33           | KRR994383 |
| KRR994267.1880 | 10.6          | 2.2-33           | KRR99439  |
| KRR994274.1880 | 11.7          | 2.2-33           | KRR994310 |
| KRR994283.1880 | 13.2          | 2.2-33           | KRR99431  |
| KRR994290.1880 | 14.3          | 2.2-33           | KRR994312 |
| KRR994297.1880 | 15.4          | 2.2-33           | KRR994313 |
| KRR994210.1880 | 16.6          | 2.2-33           | KRR994314 |
| KRR994212.1880 | 19.0          | 2.2-33           | KRR994316 |
| KRR994213.1880 | 20.6          | 2.3-33           | KRR994318 |
| KRR994214.1880 | 22.8          | 2.5-33           | KRR994319 |
| KRR994216.1880 | 24.7          | 2.5-33           | KRR99432  |
| KRR994217.1880 | 26.6          | 2.6-33           | KRR994322 |
| KRR994218.1880 | 28.5          | 2.8-33           | KRR994324 |
| KRR994220.1880 | 31.1          | 2.8-33           | KRR994326 |
|                |               |                  |           |





## 1" 1¼"-L

Standard Pressure Range)

| RWV Code       | Flow  | Range∆P |
|----------------|-------|---------|
|                | (GPM) | (psi)   |
| KRR992213.1880 | 2.06  | 2.5-35  |
| KRR992215.1880 | 2.38  | 2.5-35  |
| KRR992217.1880 | 2.69  | 2.5-35  |
| KRR992219.1880 | 3.01  | 2.5-35  |
| KRR992221.1880 | 3.33  | 2.6-35  |
| KRR992224.1880 | 3.80  | 2.6-35  |
| KRR992227.1880 | 4.28  | 2.6-35  |
| KRR992230.1880 | 4.76  | 2.6-35  |
| KRR992233.1880 | 5.23  | 2.6-35  |
| KRR992236.1880 | 5.71  | 2.6-35  |
| KRR992240.1880 | 6.34  | 2.6-35  |
| KRR992245.1880 | 7.13  | 2.8-35  |
| KRR992250.1880 | 7.93  | 2.8-35  |
| KRR992255.1880 | 8.72  | 3.0-35  |
| KRR992260.1880 | 9.51  | 3.2-35  |
| KRR992266.1880 | 10.5  | 3.5-35  |
| KRR992272.1880 | 11.4  | 3.5-35  |

| <sup>3</sup> ⁄ <sub>4</sub> " 1" 1′⁄ <sub>4</sub> " | -L |
|-----------------------------------------------------|----|
|-----------------------------------------------------|----|

Small (High Pressure Range)

| RWV Code       | Flow<br>(GPM) | Range∆P<br>(psi) |
|----------------|---------------|------------------|
| KRR992318.1880 | 2.85          | 4.2-64           |
| KRR992320.1880 | 3.17          | 4.6-64           |
| KRR992323.1880 | 3.65          | 4.8-64           |
| KRR992327.1880 | 3.96          | 4.8-64           |
| KRR992329.1880 | 4.60          | 4.8-64           |
| KRR992332.1880 | 5.07          | 4.8-64           |
| KRR992336.1880 | 5.71          | 4.8-64           |
| KRR992340.1880 | 6.34          | 4.8-64           |
| KRR992345.1880 | 7.13          | 4.8-64           |
| KRR992350.1880 | 7.93          | 4.8-64           |
| KRR992355.1880 | 8.72          | 4.9-64           |
| KRR992361.1880 | 9.67          | 5.2-64           |
| KRR992368.1880 | 10.8          | 5.2-64           |
| KRR992375.1880 | 11.9          | 5.2-64           |
| KRR992380.1880 | 12.7          | 5.2-64           |
| KRR992386.1880 | 13.6          | 5.8-64           |
| KRR992395.1880 | 15.1          | 5.8-64           |

#### 1¼" 1½" 2″

Medium (High Pressure Range)

| Code    | Flow<br>(GPM) | Range∆P<br>(psi) |
|---------|---------------|------------------|
| 52.1880 | 9.83          | 3.9-61           |
| 58.1880 | 10.8          | 3.9-61           |
| 74.1880 | 11.7          | 3.9-61           |
| 79.1880 | 12.5          | 3.9-61           |
| 33.1880 | 13.2          | 3.9-61           |
| 91.1880 | 14.4          | 4.1-61           |
| 10.1880 | 15.9          | 4.1-61           |
| 11.1880 | 17.6          | 4.1-61           |
| 12.1880 | 19.0          | 4.2-61           |
| 13.1880 | 20.6          | 4.2-61           |
| 14.1880 | 22.0          | 4.2-61           |
| 16.1880 | 26.0          | 4.4-61           |
| 18.1880 | 27.7          | 4.5-61           |
| 19.1880 | 30.1          | 4.5-61           |
| 21.1880 | 32.7          | 4.6-61           |
| 22.1880 | 35.4          | 4.9-61           |
| 24.1880 | 38.0          | 5.1-61           |
| 26.1880 | 41.2          | 5.5-61           |
|         |               |                  |

## 2"-H

#### Large

| RWV Code       | Flow<br>(GPM) | Range∆P<br>(psi) |
|----------------|---------------|------------------|
| KRR996216.1880 | 25.4          | 2.0-33           |
| KRR996218.1880 | 28.5          | 2.0-33           |
| KRR996220.1880 | 31.7          | 2.0-33           |
| KRR996222.1880 | 34.9          | 2.2-33           |
| KRR996224.1880 | 38.0          | 2.2-33           |
| KRR996227.1880 | 42.8          | 2.2-33           |
| KRR996230.1880 | 47.6          | 2.3-33           |
| KRR996233.1880 | 52.3          | 2.3-33           |
| KRR996236.1880 | 57.1          | 2.3-33           |
| KRR996240.1880 | 63.4          | 2.5-33           |
| KRR996245.1880 | 71.3          | 2.5-33           |
| KRR996250.1880 | 79.3          | 2.8-33           |
| KRR996255.1890 | 87.2          | 2.8-33           |
| KRR996260.1880 | 95.1          | 3.0-33           |
| KRR996266.1880 | 105           | 3.0-33           |
| KRR996273.1880 | 116           | 3.6-33           |
| KRR996280.1880 | 127           | 4.1-33           |
| KRR996288.1880 | 139           | 5.1-33           |
| KRR996297.1880 | 154           | 5.8-33           |





## 9707 series

#### **Features**

Pressure independent control valve (PICV) Threaded M/M for union ends (ASME B1.20.1 - NPSM) Max.  $\Delta P$  working pressure 60psi 100% full stroke modulation, independent of valve setting M30x1.5 threads for linear actuator Available with integral isolation ball valve for positive shut-off Valve upstream and downstream test ports standard

DZR brass construction 300WOG FNPT, MNPT, and Solder tailpieces available

DZR Dezincification Resistant



Working conditions

Water: 15°F - 260°F below 32°F only for water with added antifreezing fluids over 212°F only for water with added anti-boiling fluids (Ethylene-glycolic and propylene-glycolic mixtures up to 50% may be used)



#### Model

9707R --- PICV 9707T --- PICV with tailpieces 9707IBV --- PICV with isolation ball valve and tailpiece

Flow Range

0.12 GPM - 15.9 GPM



The 9707R can be utilized together with Vaurien series of linear actuators for ON/OFF or Modulating (0-10V) operations. The actuator can be easily mounted to the valve for direct interface with the building management system.

5

# RWV

## Vaurien-M

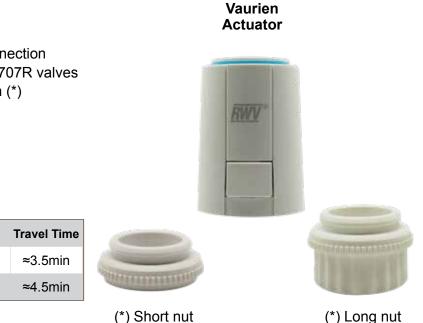
#### **Features**

Modulating electromechanical linear actuator Suitable for RWV 9707 valve M30x1.5 threaded connection With 78in electric wire Enclosure protection IP54 Power supply 50Hz/60Hz, 24V AC/DC, power 1.5W Max stroke 0.236in, auto stroke detection Auto-zero self calibration Auto-stroke detection Stroke time 2sec/0.01in, thrust 29lbf CE compliant

### 0-10V control signal

(adjustable for 0-5VDC, 5-10VDC, 2-10VDC, 0-20mA or 4-20mA) Linear charactreristic (adjustable for equal-percentage characteristic) Working ambient temperature: 32° to +122°F Working fluid temperature: 32° to +203°F

## Vaurien-1 / Vaurien-2


### **Features**

ON/OFF linear actuator with threaded connection Suitable for RWV 9520 series and RWV 9707R valves M30x1.5 threaded nut with fast connection (\*) With 40in electric wire Enclosure protection IP54/NEMA3 Power supply 50Hz/60Hz Normally closed (NC) Working temperature: 32°F to +140°F

| Model     | Power supply | Thrust  | Stroke |  |
|-----------|--------------|---------|--------|--|
| Vaurien 1 | 24VDC        | 22.5lbf | 0.15in |  |
| Vaurien 2 | 24VDC        | 28.1lbf | 0.25in |  |

Linear Actuators for Balancing Valves







## **Standard Kit Configuration**

## **Coil Hook Up Kits**

Supplied with:

**Balancing Valves:** 

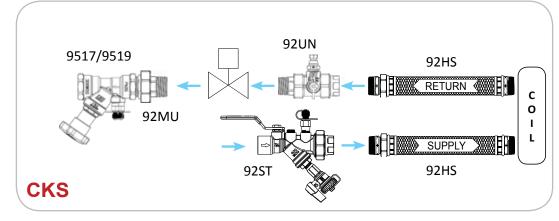
CKS - 9517/9519 Static, Fixed Orifice (Venturi Insert)

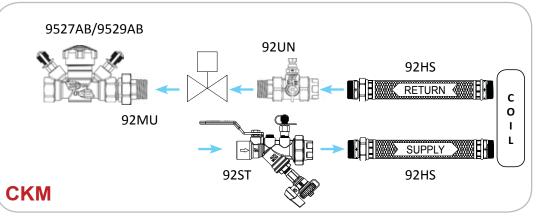
CKM - 9527AB/9529AB Variable Orifice

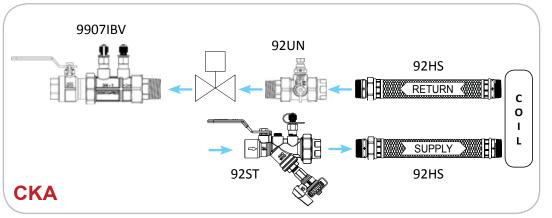
CKA - 9907IBV Automatic

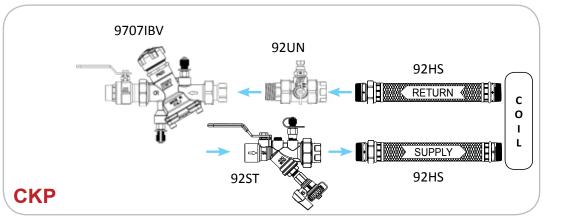
CKP - 9707IBV Pressure Independent Control

#### Accessories:


92HS Stainless Steel Braided Hoses (2)


92ST Strainer with Shut off, or 92UDT Union Ball Valve


92UN Union with Air Vent


92MU Male Micro Union

\* Additional components as required \* Vacuum sealed to corrugated backing









## **T650RWV**



**Features** 

Memory capacity up to 2,000 records Anti-freeze media correction AAA battery type Ergonomic device case Interface to sensor through smart device Dedicated app for iOS/Android Simple valve detection by valve image 24-bit pressure sensor IP65 cover

the charts

| C Martin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | disease in           |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---|
| Case Street Law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.5                  |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.9                  |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.53                 |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00                 |   |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                    |   |
| 11.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30.0                 |   |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NAME OF COLUMN       |   |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | States and           | - |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ittiiniiniiniiniinii |   |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                    | - |
| States of the local division of the local di |                      |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                  |   |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      | _ |

## **95INSL / 99INSL**

**Features** 

Polyethylene Foam Insulation Self-sealing wrap

Working temperature: -76°F - 200°F



## Digital Differential Pressure Manometer / Clamshell

Project measuring with the possibility of export and transfer projects via email

\* Used with 951x Fixed Orifice Manual Balancing Valves enables flow rate reading in real time without the need of











## 9574P

#### **Features**

Variable orifice cast iron balancing valve Precision Adjustable Handwheel Flat face flange ends to ANSI B16.10 Flanges drilled according to ASME B16.1 class 125 Acrylic painted surface Valve accuracy ±5% to nominal Cv value Threaded and capped test ports PT ports included with valves (not mounted)

Flow Range 24.09 GPM - 4057 GPM

| Size       | 2"      | <b>2-</b> ½" | 3"    | 4"    | 5"    | 6"    | 8"    | 10"    | 12"    |
|------------|---------|--------------|-------|-------|-------|-------|-------|--------|--------|
| Flow range | 24.09 - | 47.9 -       | 101 - | 172 - | 267 - | 376 - | 664 - | 1055 - | 1493 - |
| (GPM)      | 55.63   | 110          | 244   | 413   | 630   | 902   | 1593  | 2485   | 4057   |

## 9450A

Stainless steel wafer orifice plate For ANSI 125 or ANSI 150 flanges Design according to BS7350

The orifice plate can be installed together with the same size of 9574P.

## 9407

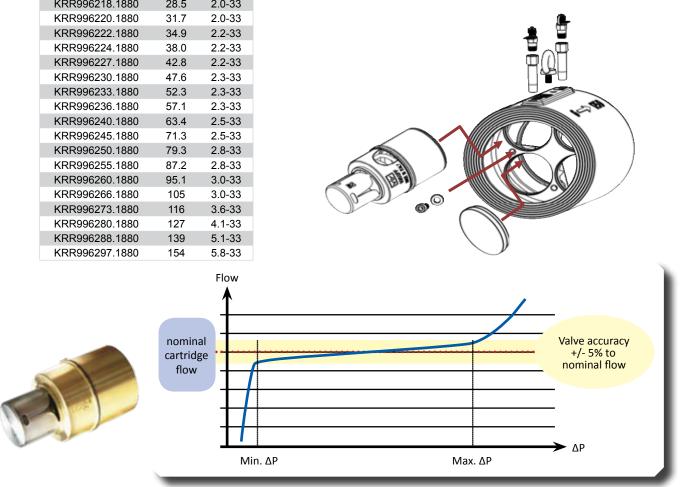
DZR Brass metering station **FNPT x MNPT** Design according to BS7350

Venturi insert for optimal accuracy +/- 3% (test according to BS7350)





## 9957W


#### **Features**

Ductile iron wafer automatic balancing valve For ASME B16.42 class 150 flanges Provided with eyebolt for DN≥4" Wide range of flows available (see cartridge section) Test points with extension included (not mounted) Class 150

#### **Flow Range**

25.4GPM to 154GPM for 2<sup>1</sup>/<sub>2</sub>" and 3" (single cartridge) Higher flows available with the multi cartridge system for DN≥4" Minimum working  $\Delta P$  depending on cartridge configuration

|    | Size              | <b>2-</b> <sup>1</sup> / <sub>2</sub> " | 3"            |   | 4'             | , | 5'          |
|----|-------------------|-----------------------------------------|---------------|---|----------------|---|-------------|
| Fl | ow range<br>(GPM) | 25.4 -<br>154                           | 25.4<br>154   |   | 25.4<br>308    | - | 25.4<br>462 |
|    | RWV               | Code                                    | Flow<br>(GPM) |   | nge∆P<br>[psi) |   |             |
|    | KRR9962           | 216.1880                                | 25.4          | 2 | .0-33          |   |             |
|    | KRR9962           | 218.1880                                | 28.5          | 2 | .0-33          |   |             |
|    | KRR9962           | 220.1880                                | 31.7          | 2 | .0-33          |   |             |
|    | KRR9962           | 222.1880                                | 34.9          | 2 | .2-33          |   |             |
|    | KRR9962           | 224.1880                                | 38.0          | 2 | .2-33          |   |             |
|    | KRR9962           | 27.1880                                 | 42.8          | 2 | .2-33          |   |             |
|    | KRR9962           | 230.1880                                | 47.6          | 2 | .3-33          |   |             |
|    | KRR9962           | 233.1880                                | 52.3          | 2 | .3-33          |   |             |
|    | KRR9962           | 236.1880                                | 57.1          | 2 | .3-33          |   |             |
|    | KRR9962           | 240.1880                                | 63.4          | 2 | .5-33          |   |             |
|    | KRR9962           | 245.1880                                | 71.3          | 2 | .5-33          |   |             |
|    | KRR9962           | 250.1880                                | 79.3          | 2 | .8-33          |   |             |
|    | KRR9962           | 255.1880                                | 87.2          | 2 | .8-33          |   |             |
|    | KRR9962           | 260.1880                                | 95.1          | 3 | .0-33          |   |             |
|    | KRR9962           | 266.1880                                | 105           | 3 | .0-33          |   |             |
|    | KRR9962           | 273.1880                                | 116           | 3 | .6-33          |   |             |
|    | KRR9962           | 280.1880                                | 127           | 4 | 1-33           |   |             |
|    | KRR9962           | 288.1880                                | 139           | 5 | .1-33          |   |             |
|    | KRR9962           | 297.1880                                | 154           | 5 | .8-33          |   |             |
|    |                   |                                         |               |   |                |   |             |





## **RWV Hydronic Controls®**

## Iron Automatic Balancing Valve



| 5"     | 6"     | 8"     | 10"    | 12"    |
|--------|--------|--------|--------|--------|
| 25.4 - | 25.4 - | 25.4 - | 25.4 - | 25.4 - |
| 462    | 616    | 1078   | 1540   | 2156   |



## **92UN**

#### Features

DZR brass union body with manual air vent and test point Body available:

FNPT (ASME B1.20.1 - NPT) Solder (ASME B16.22) EzPress Tailpiece available: **FNPT** (ASME B1.20.1 - NPT) **MNPT** (ASME B1.20.1 - NPT) Solder (ASME B16.22) **PEX** (ASME F1960)



#### 400WOG

Working conditions:

Water: from 15°F to 260°F below 32°F only for water with added antifreezing fluids

over 212°F only for water with added anti-boiling fluids

Dezincification Resistant

## **92MU**

#### Features

DZR brass union Body end MNPT (ASME B1.20.1) Tailpiece available: **FNPT** (ASME B1.20.1 - NPT) **MNPT** (ASME B1.20.1 - NPT) Solder (ASME B16.22) **PEX** (ASME F1960)

#### 400WOG

Working conditions:

Water: from 15°F to 260°F below 32°F only for water with added antifreezing fluids over 212°F only for water with added anti-boiling fluids





## 92UBT / 92UBS / 92UBP

#### **Features**

DZR brass union ball valve Blow-out proof stem Adjustable packing nut Full port Three tapped 1/4" port

600WOG @ 160°F

Working conditions: Water: from 15°F to 260°F below 32°F only for water with added antifreezing fluids over 212°F only for water with added anti-boiling fluids

## 92UDT / 92UDS / 92UDP

Features

DZR brass union ball valve with drain Blow-out proof stem Adjustable packing nut Full port Blow down valve with capped 3/4" hose end One installed test point One additional tapped <sup>1</sup>/<sub>4</sub>" port

600WOG @ 160°F

Working conditions: Water: from 15°F to 260°F below 32°F only for water with added antifreezing fluids over 212°F only for water with added anti-boiling fluids

| Models        |                              |
|---------------|------------------------------|
| 92UBT & 92UDT | Threaded end (ASME B1.2      |
|               | FNPT tailpiece standard, M   |
| 92UBS & 92UDS | - Solder end (ASME B16.22    |
|               | Solder tailpiece standard, F |
| 92UBP & 92UDP | - EzPress end with union en  |
|               | EzPress tailpiece standard   |
|               |                              |



**RWV Hydronic Controls®** 

## Bypass Valve / Union Ball Valve





20.1 - NPT) with union end

MNPT, Solder, EzPress and PEX (F1960) options available 2) with union end

FNPT, MNPT, EzPress and PEX (F1960) options available nd

d, FNPT, MNPT, Solder and PEX (F1960) options available



## 92ST / 92SS / 92SP

#### **Features**

DZR brass ball valve - wye strainer combination Blow-out proof stem Adjustable packing nut Full port Y pattern strainer Stainless steel screen (20 mesh) Blow down valve with 3/4" hose end One installed test point One additional tapped 1/4" port



400WOG @ 160°F

Working conditions:

Water: from 15°F to 260°F

below 32°F only for water with added antifreezing fluids over 212°F only for water with added anti-boiling fluids

DZR

Dezincification Resistant

## 92ST-BY / 92SS-BY / 92SP-BY

#### **Features**

DZR brass ball valve - wye strainer combination  $\frac{1}{2}$ " port for bypass Blow-out proof stem Adjustable packing nut Full port Y pattern strainer Stainless steel screen (20 mesh)

400WOG @ 160°F

Working conditions: Water: from 15°F to 260°F below 32°F only for water with added antifreezing fluids over 212°F only for water with added anti-boiling fluids

#### **Models**

92ST & 92ST-BY --- Threaded end (ASME B1.20.1 - NPT) with union end FNPT tailpiece standard, MNPT tailpiece option available 92SS & 92SS-BY --- Solder end (ASME B16.22) with union end Solder tailpiece standard, FNPT and MNPT tailpiece options available 92SP & 92SP-BY --- EzPress end with union end EzPress tailpiece standard, FNPT and MNPT tailpiece options available

# DZR Dezincification Resistant

## 92STC / 92SSC / 92SEC

#### **Features**

DZR brass ball valve - wye strainer combination Blow-out proof stem Adjustable packing nut Regular port Y pattern strainer Stainless steel screen (20 mesh) Blow down valve with <sup>3</sup>/<sub>4</sub>" hose end One installed test point Two additional tapped 1/4" port

400WOG @ 160°F

Working conditions: Water: from 15°F to 260°F below 32°F only for water with added antifreezing fluids over 212°F only for water with added anti-boiling fluids

#### Models

92STC --- Threaded end (ASME B1.20.1 - NPT) with union end, FNPT tailpiece 92SSC ---- Solder end (ASME B16.22) with union end, Solder tailpiece 92SEC --- PEX end (F1960) with union end, PEX, FNPT or Solder tailpiece options available

## **92HS**



**Features** Flexible hose EPDM hose, fire retardant stainless steel braided

#### Models

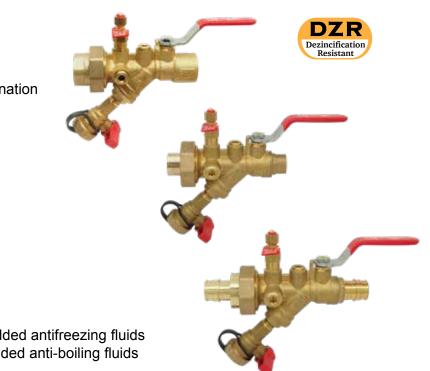
92HS-MM --- MNPT end with swivel MNPT end 92HS-MS ---- MNPT end with swivel Solder end 92HS-MF --- MNPT end with swivel FNPT end

## **92T**

**Features** DZR brass tee



400WOG @ 160°F




13

**RWV Hydronic Controls®** 

**RWV Hydronic Controls®** 

## Combination Strainer / Hose / Tee / Air Vent





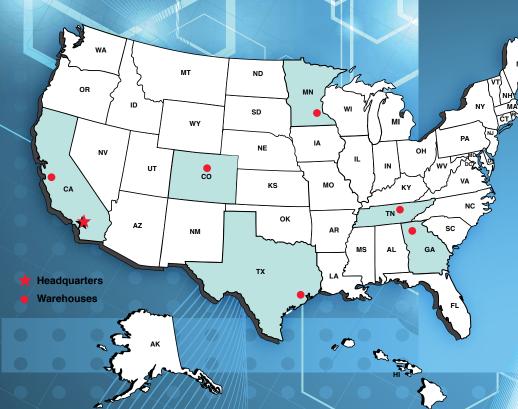
9380N

**Features** Cast iron high capacity automatic air vent

200 CWP / 125 WSP

## 9390N

**Features** Brass automatic air vent


150 CWP





# Leaders In Valve Technology

TITLE



## **US** Locations

| Headquarters 🕒 🔶                |              |
|---------------------------------|--------------|
| Lake Forest, California         | 800.222.RWVC |
| Warehouse Locations             |              |
| Menlo Park, California          | 650.566.9260 |
| Arvada, Colorado                | 303.375.1515 |
| Lakeville, Minnesota            | 952.469.2191 |
| Cartersville, Georgia           | 770.475.3006 |
| Nashville, Tennessee            | 615.350.8334 |
| Houston, Texas                  | 281.448.1782 |
| Sales representatives           |              |
| Visit www.redwhitevelvecorp.com | to find      |



Visit www.redwhitevalvecorp.com to find the authorized sales representative nearest you.



## **RWV Hydronic Controls<sup>®</sup>**

www.redwhitevalvecorp.com